前言
本文以“【欣小萌】芒种,一想到你我就……”为教程视频
下载视频
获取弹幕内容
导入用到的库
import requests
import pandas as pd
import re
import time
import random
from concurrent.futures import ThreadPoolExecutor
import datetime
from fake_useragent import UserAgent
# 随机产生请求头
ua = UserAgent(verify_ssl=False, path='fake_useragent.json')
start_time = datetime.datetime.now()
爬取弹幕数据
def Grab_barrage(date):
# 伪装请求头
headers = {
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"accept-encoding": "gzip",
"origin": "https://www.bilibili.com",
"referer": "https://www.bilibili.com/video/BV1sJ411P7CF",
"user-agent": ua.random,
"cookie": "chage to your cookies"
}
# 构造url访问 需要用到的参数 爬取指定日期的弹幕
params = {
'type': 1,
'oid': '116963870',
'date': date
}
# 发送请求 获取响应
response = requests.get(url, params=params, headers=headers)
# print(response.encoding) 重新设置编码
response.encoding = 'utf-8'
# print(response.text)
# 正则匹配提取数据 转成集合去除重复弹幕
comment = set(re.findall('<d p=".*?">(.*?)</d>', response.text))
# 将每条弹幕数据写入txt
with open('bullet.txt', 'a+') as f:
for con in comment:
f.write(con + '\n')
print(con)
time.sleep(random.randint(1, 3)) # 休眠
爬取弹幕数据
def main():
# 开多线程爬取 提高爬取效率
with ThreadPoolExecutor(max_workers=4) as executor:
executor.map(Grab_barrage, date_list)
# 计算所用时间
delta = (datetime.datetime.now() - start_time).total_seconds()
print(f'用时:{delta}s -----------> 弹幕数据成功保存到本地txt')
主函数调用
if __name__ == '__main__':
# 目标url
url = "https://api.bilibili.com/x/v2/dm/history"
start = '20201201'
end = '20210128'
# 生成时间序列
date_list = [x for x in pd.date_range(start, end).strftime('%Y-%m-%d')]
print(date_list)
count = 0
# 调用主函数
main()
结果如下
从视频中提取图片
import cv2
# ============================ 视频处理 分割成一帧帧图片 =======================================
cap = cv2.VideoCapture(r"beauty.flv")
num = 1
while True:
# 逐帧读取视频 按顺序保存到本地文件夹
ret, frame = cap.read()
if ret:
if 88 <= num < 888:
cv2.imwrite(f"./imgs/img_{num}.jpg", frame) # 保存一帧帧的图片
print(f'========== 已成功保存第{num}张图片 ==========')
num += 1
else:
break
cap.release() # 释放资源
结果如下
从视频中提取图片
利用百度AI进行人像分割
import cv2
import base64
import numpy as np
import os
from aip import AipBodyAnalysis
import time
import random
# 利用百度AI的人像分割服务 转化为二值图 有小姐姐身影的蒙版
# 百度云中已创建应用的 APP_ID API_KEY SECRET_KEY
APP_ID = '23649226'
API_KEY = '**********************'
SECRET_KEY = '**********************'
client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
# 保存图像分割后的路径
path = './mask_img/'
# os.listdir 列出保存到图片名称
img_files = os.listdir('./imgs')
print(img_files)
for num in range(88, len(img_files) + 1):
# 按顺序构造出图片路径
img = f'./imgs/img_{num}.jpg'
img1 = cv2.imread(img)
height, width, _ = img1.shape
# print(height, width)
# 二进制方式读取图片
with open(img, 'rb') as fp:
img_info = fp.read()
# 设置只返回前景 也就是分割出来的人像
seg_res = client.bodySeg(img_info)
labelmap = base64.b64decode(seg_res['labelmap'])
nparr = np.frombuffer(labelmap, np.uint8)
labelimg = cv2.imdecode(nparr, 1)
labelimg = cv2.resize(labelimg, (width, height), interpolation=cv2.INTER_NEAREST)
new_img = np.where(labelimg == 1, 255, labelimg)
mask_name = path + 'mask_{}.png'.format(num)
# 保存分割出来的人像
cv2.imwrite(mask_name, new_img)
print(f'======== 第{num}张图像分割完成 ========')
time.sleep(random.randint(1,2))
结果如下
小姐姐跳舞词云生成
from wordcloud import WordCloud
import collections
import jieba
import re
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
# 读取数据
with open('bullet.txt') as f:
data = f.read()
# 文本预处理 去除一些无用的字符 只提取出中文出来
new_data = re.findall('[\u4e00-\u9fa5]+', data, re.S)
new_data = "/".join(new_data)
# 文本分词
seg_list_exact = jieba.cut(new_data, cut_all=True)
result_list = []
with open('stop_words.txt', encoding='utf-8') as f:
con = f.read().split('\n')
stop_words = set()
for i in con:
stop_words.add(i)
for word in seg_list_exact:
# 设置停用词并去除单个词
if word not in stop_words and len(word) > 1:
result_list.append(word)
# 筛选后统计词频
word_counts = collections.Counter(result_list)
path = './wordcloud/'
for num in range(88, 888):
img = f'./mask_img/mask_{num}'
# 获取蒙版图片
mask_ = 255 - np.array(Image.open(img))
# 绘制词云
plt.figure(figsize=(8, 5), dpi=200)
my_cloud = WordCloud(
background_color='black', # 设置背景颜色 默认是black
mask=mask_, # 自定义蒙版
mode='RGBA',
max_words=500,
font_path='simhei.ttf', # 设置字体 显示中文
).generate_from_frequencies(word_counts)
# 显示生成的词云图片
plt.imshow(my_cloud)
# 显示设置词云图中无坐标轴
plt.axis('off')
word_cloud_name = path + 'wordcloud_{}.png'.format(num)
my_cloud.to_file(word_cloud_name) # 保存词云图片
print(f'======== 第{num}张词云图生成 ========')
结果如下
合成跳舞视频
import cv2
import os
# 输出视频的保存路径
video_dir = 'result.mp4'
# 帧率
fps = 30
# 图片尺寸
img_size = (1920, 1080)
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V') # opencv3.0 mp4会有警告但可以播放
videoWriter = cv2.VideoWriter(video_dir, fourcc, fps, img_size)
img_files = os.listdir('./wordcloud')
for i in range(88, 888):
img_path = './wordcloud/' + 'wordcloud_{}.png'.format(i)
frame = cv2.imread(img_path)
frame = cv2.resize(frame, img_size) # 生成视频 图片尺寸和设定尺寸相同
videoWriter.write(frame) # 写进视频里
print(f'======== 按照视频顺序第{i}张图片合进视频 ========')
videoWriter.release() # 释放资源
效果如下
视频插入音频
import moviepy.editor as mpy
# 读取词云视频
my_clip = mpy.VideoFileClip('result.mp4')
# 截取背景音乐
audio_background = mpy.AudioFileClip('song.mp4').subclip(17, 44)
audio_background.write_audiofile('vmt.mp3')
# 视频中插入音频
final_clip = my_clip.set_audio(audio_background)
# 保存为最终的视频 动听的音乐!漂亮小姐姐词云跳舞视频!
final_clip.write_videofile('final_video.mp4')
效果如下
本文参考 叶庭云利用Python做一个漂亮小姐姐词云跳舞视频
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(11)
有个视频不见了。。。
小姐姐好漂亮!
用Python做一个漂亮小姐姐词云跳舞视频
Python的魅力只有使用了才体会的到
一想到你我就……
评论列表
Спасибо за пост
博主加油!
I risk to seem the layman, but nevertheless I will ask, whence it and who in general has written?
做一个漂亮小姐姐词云跳舞视频
很不错嘛